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A B S T R A C T

Based on principal component analysis and back propagation neural network (PCA-BP), a rice blast recognition
method was proposed to solve the problems of low accuracy, inefficiency and subjectivity of artificial re-
cognition of rice blast. First, image of harvested lesion was processed, with 6 color features, 10 morphological
features, and 5 texture features of each lesion were extracted. Secondly, stepwise regression analysis was used to
analyze the correlation between the characteristic parameters. The results showed a linear correlation. Then, the
principal component analysis (PCA) method was used to reduce the dimension linearly, to map 21 features into 6
comprehensive features as input parameters. Finally a 6-11-4, 3-layer back propagation (BP) neural network
identification model was constructed for the classification and recognition of the lesion. The experimental results
show that the average recognition rate of rice blast based on principal component analysis and BP neural net-
work is 95.83%, which is 7.5% higher than the average recognition rate using BP neural network and 2.5%
higher than the existing SVM method with high accuracy in identifying rice blast. It can identify rice blast
quickly and effectively.

1. Introduction

Rice blast is one of the most destructive rice diseases that are caused
by the Ascomycetes Manaporthe grisea (Hebert Barr) and occur ex-
tensively around the world (Kumar et al., 2016). It not only leads to loss
of rice yield, but also seriously reduces the quality of rice (Joshi and
Jadhav, 2016; Huang et al., 2015). Fig. 1 shows four different types of
rice blast lesion. Thus, preventing and treating rice blast has become a
global issue of wide concern and research. At present, the chemical
control is the most effective measure for prevention and treatment of
rice blast, including using chemicals to sterilize the seeds before
sowing, and spraying pesticides at the various growth stages that easy
to contract rice blast or according to the disease degree of rice blast
(Sha et al., 2016). However, one drawback with chemical control is that
the overuse of pesticides would have an adverse effect on the en-
vironment (air, water and soil) and human health. To address the
problem above, we must obtain the crops growth information quickly
and accurately, timely diagnose the etiology and degree of injured
crops, and then use the appropriate pesticides and dosage according to
indications. All of these are relied on the effective recognition and

diagnosis method of rice blast. To the best of our knowledge, the rice
blast is usually identified by observing the shape and color of the lesion,
and then determined the type of disease according to the disease book.
Obvious, this traditional method is subjective and requires high pro-
fessional knowledge and rich experience. Moreover, its identification
accuracy and efficiency is also relatively low. Therefore, a simple and
fast identification method with high accuracy for rice blast is urgently
needed.

With the development of science and technology, computer tech-
nology has been increasingly used in the field of agricultural en-
gineering, thereby forming a number of effective plant disease re-
cognition methods (Abdullakasim et al., 2015; Hu et al., 2016; Baldi
et al., 2017; Chaki et al., 2015). Among these methods, the image re-
cognition of plant diseases has attracted much attention. Generally, this
approach is firstly to extract the characteristic feature information from
the diseased regions in the obtained images by using image processing
techniques, and then to achieve disease recognition by using pattern
recognition methods (e.g. discriminant analysis, neural networks and
support vector machine) (Shi et al., 2017; Wang et al., 2012;
Bakhshipour and Jafari, 2018), which could get a large amount of
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information quickly, and accurately distinguish the nuances to avoid
the errors caused by human factors. It has been demonstrated that a lot
of plant diseases have been successfully identified via using the image
processing techniques and neural network methods, such as the apple
disease (Boniecki et al., 2015), cucumber lesion (Jia and Ji, 2013);
maize diseasep (Cao et al., 2012), and other plant leaf diseases
(Chouhan et al., 2018). Although the identification of rice blast using
image processing techniques and multi-layer perceived neural network
have been also reported (Liu and Zhou, 2009); the research on the
identification of different types of lesions of rice blast is still not en-
ough. In the meantime, most of the studies above directly input the
obtained eigenvalues into the neural network classifier for feature
training and classification. If there is some correlation between certain
features or the contribution of features to the recognition rate is not
large, the recognition time and accuracy will be affected. Selecting
features with large contribution rate and small correlation between
features can reduce the redundant data and shorten the time of data
processing and recognition. Due to the large number of features and the
insignificant correlation between features, direct manual selection may
not be good. Existing feature extraction and dimensionality reduction
techniques include linear methods (Zabalza et al., 2014; Zabalza et al.,
2014) (such as principal component analysis, etc.) and nonlinear
methods (such as local linear embedding Huang et al., 2012, etc.).
Perform correlation analysis on the extracted feature data and find that
the data are linearly related, therefore the principal component analysis
method was chosen to reduce the dimension of the data in this research.

In view of the above problems, this paper presents a method com-
bining image processing technology, principal component analysis and
BP neural network (PCA-BP) to identify four different types of rice blast
lesions. Firstly, the lesion image was obtained by camera and the lesion
image was preprocessed. Then the lesion morphology, color and texture
features were extracted. After that, the PCA was used to reduce the
dimension of the feature vector. Finally, the dimensionality-reduced
feature vectors were input to the neural network for lesion classifica-
tion. The experimental results show that the average accuracy of PCA-
BP method is 95.83%, which is higher than that of direct recognition by
BP neural network (88.33%), and 2.5% higher than the existing SVM
method with high accuracy in identifying rice blast (Zhao et al., 2013).
In addition, the recognition speed is about 9 times faster than the image
recognition without PCA at a relatively high recognition rate. Our
findings provide a new method for the rapid and efficient identification
of rice blast.

2. Lesions classification and data collection

2.1. Lesions classification

In this paper, four different types of rice blast lesions were studied.
Four different types of rice blast lesion characteristics are shown in

Table 1.

2.2. Lesion image acquisition

In this paper, all the rice disease image samples were collected
under the natural environment in August 2017 in Jiangpu Experimental
Base of Nanjing Agricultural University. In order to reduce the error
caused by light, the image sampling was operated in 7:00 am to
10:00 pm and 4:00 pm to 6:00 pm, the image was taken using a Zen Z3
camera (resolution ×4000 3000) in single focal length mode to shoot
the rice leaves. The camera is about 0.2m above the sample. To get a
clearer leaf image of the disease, an A4 paper was placed under the
leaves to eliminate other complex background, the experiment col-
lected a total of 387 different lesion samples including 374 valid sam-
ples. The pixel size of the image processed in the experiment was

×700 200, and the image processing algorithm was implemented in
Matlab 2014b. The basis for the selection of the time period for image
acquisition is based on experiments conducted at 8:00 am, 10 am,
12 pm, and 2 pm, 4 pm, and 6 pm. The effect is shown in Fig. 2 after
observing the effect of shooting time on the RGB channel of the same
sample.

It can be seen from Fig. 2 that under different light intensities at
different times, appropriate sunshading measures are taken under
bright light at noon, and the RGB three-channel histograms of the same
sample are different. Under the condition of avoiding strong light, the
difference in histogram waveforms is not significant, and the difference
in images is not significant.

3. Lesion feature extraction and correlation analysis

The color, shape, and texture of an image can be described by the
relationship between the structure of the image and the color dis-
tribution, often used as feature vectors for image recognition. There are
some differences in the color, morphology, and texture between the
four kinds of lesions of rice blast, so the lesion color, morphological,
and texture features can be extracted as the eigenvectors for the iden-
tification of the four kinds of lesions.

Fig. 1. Rice blast disease graph. (a) Acute type lesions (b) White spots type lesions (c) Chronic type lesions (d) Brown spots type lesions.

Table 1
Four different types of rice blast lesion characteristics.

Disease name Shape characteristics Color and texture features

Chronic type lesions Fusiform Center: gray; Edge: brown;
Peripheral: yellow halo

Acute type lesions Nearly round or oval Dark green; gray moldy layer
Brown spots type

lesions
Dots Brown

White spots type
lesions

Dots White
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3.1. Color feature extraction

In digital image processing, the most fundamental sampling color
coordinate system is RGB, but R, G, B three components are greatly
affected by the lighting (Liu and Zhou, 2009). As the samples were
collected under natural light, and greatly affected by the light, R, G, B
components were not chosen as color characteristics. RGB color space
was converted to HSI and YCbCr color space with independent color
and brightness information through color space conversion, which can
effectively restrain noise and reduce the influence of uneven illumina-
tion (Qi et al., 2006). In this study, H, S, I, Y, Cb, and Cr were selected as
the color eigenvalues for identification. Due to space limitations, only
HIS and YcbCr spatial map and their components of the acute type le-
sion were given, as shown in Figs. 3 and 4.

3.2. Morphological feature extraction

After analyzing the histograms of the color components R, G, and B
in the experiment, the G-B, R-G, and 2G-R-B color component combi-
nations were selected for image processing. First, each color component
combination was median filtered, then the image was segmented using
the maximum interclass variance method (OSTU) (Sha et al., 2016) to
get the binary image. As shown in Fig. 5. It was found that only the

lesion area was found after R-G segmentation, which was convenient
for morphological feature extraction and segmentation. Finally, the R-G
component combination was chosen for analysis.

The binarized image obtained by image segmentation was subjected
to morphological processing. Morphological processing can eliminate
some isolated dots, fill holes, smooth the edges, and reduce the inter-
ference of small dots on the analysis results. Morphologically treated
lesion images were regionally marked. Area labeling refers to attaching
the same label to the connected pixels and attaching different labels to
different connected components (Zhao et al., 2008). Regional features
and boundary features can be extracted separately by region markers to
calculate morphological parameters of each lesion.

In this paper, 10 morphological features including area (the number
of pixels in lesion area), perimeter (the number of contour pixels in
lesion area), eccentricity, minimum circumscribed rectangle area (in
the pixel sense), ovality, rectangularity, the long axis, short axis, and
the ratio of long axis to short axis of the equivalent ellipse, and com-
plexity were extracted. Among them, the ovality, the rectangularity,
and the complexity were calculated by (1)–(3).
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Fig. 2. R, G, B three-channel gray level distribution images.
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=R A
SMER

Rectangularity: sq (2)

=C P
A

Complexity:
2

(3)

In (1)–(3), a and b respectively are the major and minor axis lengths
of the ellipse equivalent to the lesion area in the pixel sense, A is the
lesion area, P is the circumference, and SMER is the smallest circum-
scribed rectangle area.

3.3. Texture feature extraction

Rice lesion texture is an important index to distinguish the type of
rice lesion, while the gray level co-occurrence matrix can reflect the
main texture features of the image. Set to f x y( , ) as a two-dimensional
digital image, image size ×M N , gray level L. Assuming that x y( , )1 1 and
x y( , )2 2 are two pixels in f x y( , ), the distance is d and the angle between
the two and the ordinate is θ, then a gray level co-occurrence matrix
P i j d θ( , | , ) is obtained (Tang et al., 2008):

= ∈ × = =P i j d θ x y x y M N d θ f x y i f x y j( , | , ) #{( , ), ( , ) | , , ( , ) , ( , ) }1 1 2 2 1 1 2 2

(4)

where # {x} represents the number of cells in the curly brackets, θ is the
span value, the interval is generally limited to 45°.

In this paper, five parameters including entropy (ENT), angular
second moment (ASM), contrast (CON), correlation (COR), and inverse
difference moment (IDM) were selected as the texture features for le-
sion recognition. Eqs. (5)–(9) are formulas for calculating the five
parameters:
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where μx, μy, σx, and σy are the sum of expected and variance values for
the row and column matrix elements, respectively.

Table 2 shows the total characteristic values shown above.

3.4. Correlation analysis

In this study, stepwise regression analysis method (Li, 2004) was
used to perform correlation analysis on feature data. Each feature value
was set as the dependent variable, and the remaining feature values
were set as independent variables, then the correlation between the
feature values was analyzed. The analysis results are shown in Fig. 6.

As can be seen from Fig. 6, except for the correlation of Rectangu-
larity and Contrast being less than 70%, the correlations of other fea-
tures are all above 80%, indicating that there is a strong correlation
between features. Therefore PCA can be used to perform linear

Fig. 3. HSI and H, S, I component graphs of acute lesions original graph. (a) Original graph (b) HSI space graph (c) H component graph (d) S component graph (e) I
component graph.

Fig. 4. YCbCr and Y, Cb, Cr component graphs of acute lesions. (a) Original graph (b) YCbCr space graph (c) Y component graph (d) Cb component graph (e) Cr
component graph.
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dimensionality reduction.

4. Rice blast lesion recognition

4.1. Principal component analysis

In this study, a total of 21 color, morphological, and texture features
were extracted from rice blast. Some of these features have obvious
differences among the four kinds of lesions, some of the eigenvalues do
not change obviously, and some of the features are related to each
other. Selecting features that have a large contribution to recognition
and small correlations helps to reduce redundant data and reduce al-
gorithm processing time. Due to the relatively large number of features,
the direct artificial selection effect is not ideal and subjective strong.

The Principal component analysis (PCA) is an important method of
multivariate statistical analysis (Zhao et al., 2014). By studying the
internal structure of the index system and mapping the multiple fea-
tures into a few comprehensive features according to the principle of
maximum variance, dimensionality reduction can be realized, trans-
forming strongly correlated variables into variables that are in-
dependent or irrelevant to each other. If the number of principal
components is too small, the feature information will be lost and the
recognition rate will be reduced. However, if the factor is too much,
redundant data will be introduced to cause supersaturation, which will
affect the accuracy of recognition. Therefore, a reasonable number of
principal component factors should be selected. In practice, it is
common to take the principal components that contribute a large
amount of the first few deviations, which can not only reduce the in-
formation loss but also reduce the variables and reduce the correlation
between the variables. Generally recommended cumulative contribu-
tion rate of 80% or more is appropriate (Liu, 2014).

In this study, MATLAB 2014b software was used to carry out prin-
cipal component analysis. Table 3 shows the eigenvalues and their re-
spective contribution rates of the first six principal components. The
cumulative contribution rates of the principal components and the
contribution rates of each principal components are shown in Fig. 7.

As shown in Table 3 and Fig. 7, the contribution rate of the first
principal component is 38.79%, the cumulative contribution rate of the
first two principal components is 61.48%, the cumulative contribution
rate of the first three principal component is 74.26%, the cumulative
contribution rate of the first four principal component is 83.95%, the
cumulative contribution rate of the first five principal components is
89.84%, and the cumulative contribution rate of the first six principal
components is 94.52%. The number of principal components in the
selection is determined by the cumulative contribution of principal
components, recognition accuracy, and recognition time.

4.2. Blast disease identification based on BP neural network

BP neural network is a multi-layer feedforward neural network with
three or more layers, which consists of input layer, hidden layer, and
output layer. In a given input mode and expected response, according to
the principle of reducing the error between output and the actual, re-
verse spread to amend the weight of each connection. The constant
adjustment of the weights makes the correct rate of the network
esponse to the input mode (Si and Sun, 2015).

In this study, BP neural network used a single implicit structure with
one middle layer. The transfer function of the hidden and output layer
both is the sigmoid transfer function logsig. The number of neurons in
hidden layer based on empirical formula + +m n a( ) (m is the
number of input neurons, n is the number of output neurons, a is a
constant of 1–10) and multiple experiments. Due to the need to identify
four different types of rice blast lesions in this study, the number of
neurons in the output layer is 4, the results of the output including
1000, 0100, 0010, and 0001, which respectively represent the acute
type lesions, chronic type lesions, brown-point lesions, and white-point
lesions. The lesion identification flowchart is shown in Fig. 8.

A total of 240 lesions of each 60 were selected as a training sample,
and then 30 of each lesion were selected as a test sample for network
testing. Taking the principal components with different number as the
input of BP neural network, the accuracy of recognition and recognition
time under different number of principal components were obtained (as

Fig. 5. Acute type lesion combination of color components segmentation renderings. (a) Original graph (b) R-G segmentation graph (c) G-B segmentation graph (d)
2G-R-B segmentation graph.

Table 2
Eigenvalue table.

Eigenvalue

Color features Morphological features Texture features

H component Y component Long axis Eccentricity Entropy
S component Cb component Short axis Minimum circumscribed rectangle area Angular second moment
I component Cr component Ratio of long axis to short axis Ovality, Contrast

Area Rectangularity Correlation
Perimeter Complexity Inverse difference moment
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shown in Fig. 9).
From the figure, it can be seen that the recognition accuracy

reached 95.83% when selecting the first six principal components, only
0.84% lower than the best recognition 96.67%, but the recognition
speed is at least two times faster than the speed at the best recognition

rate. Moreover, the cumulative contribution rate of the first 6 principal
components is 94.52%, which can better maintain the original char-
acteristics. Considering the factors above comprehensively, the 6 prin-
cipal components were selected to recognize. Therefore the number of
neurons in the input layer is 6. Finally, this study confirmed the BP
neural network structure as − −6 11 4. The optimal structure of BP neural
network was based on the empirical formula. By comparing the average
accurate recognition results of 4 kinds of lesions of different hidden
layers, the recognition result is shown in Fig. 10.

It can be seen from the figure that when the number of hidden layers
is 11, only the number of accurate identification of acute lesions is one

Fig. 6. Analysis chart of correlation between features. Note: Ratio is “Ratio of long axis to short axis”, rectangle area is “Minimum circumscribed rectangle area”.

Table 3
Eigenvalues and contributions.

Principal components Eigenvalues Contributions

1 8.14659 38.793%
2 4.76508 22.691%
3 2.68311 12.777%
4 2.03435 9.687%
5 1.23614 5.886%
6 0.98301 4.681%

Fig. 7. Principal component analysis chart.

Fig. 8. Lesion identification flowchart.
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less than when the hidden layer is 10, the other three kinds of lesion
identification numbers are the most. The average recognition accuracy
of the four kinds of lesions is the highest, reaching 95.83%.

The 6 principal components after dimensionality reduction and the
21 features without dimensionality reduction were tested respectively
as input of BP neural network. The results showed that when input 6
principal components, after 84 iterations the mean square error reached
the required goal error 0.001, which used time of 6 s, and the average
recognition rate reached 95.83%. However BP neural network test re-
quired 437 iterations to hit the target error requirement, with a time of
55 s, and the average recognition rate reached 88.33%, the structure of
BP network without dimensionality reduction is − −21 14 4.Two methods
were used to test the correctness of 120 lesions, the results of which are
shown in Tables 4 and 5.

As can be seen from Tables 4 and 5, the average recognition rates of
blast lesion using PCA-BP neural network and BP neural network are

95.83% and 88.33% respectively, the accuracy of using PCA-BP com-
pared with using BP network increased by 7.5%. Comparison of the
results of the two tables shows that the two both are easy to identify as
chronic type of lesion when recognizing the acute type of lesion. After
observing the wrong type of acute lesions identified, it was found that
the misrecognized acute lesions and chronic lesions were very close in
shape and color, since the acute type is gradually similar in morphology
and color to the chronic type. BP neural network test identified two
false positives whereas PCA-BP misidentified only one when identifying
chronic lesions. Three errors were observed in the BP neural network
when identifying the brown-point type, whereas PCA-BP identified with
no error. It is because after dimensionality analysis, the correlation
between the components is small, making PCA-BP better in recognition,
but the two methods are both easy to identify white-point type lesion as
acute type lesion. Lesions under certain environmental conditions can
be transformed into acute type lesions. The two lesions in morphology
and color characteristics are similar, resulting in classification mis-
judgment. From the overall recognition effect, the PCA-BP method can
optimize the data to a certain extent and improve the recognition ac-
curacy and efficiency.

In this study, PCA-SVM and segmented-PCA-BP neural networks
were also compared. The PCA-SVM recognition results were shown in
Table 6. In the segmented-PCA(Ren et al., 2014) study, 21 features were
divided into three segments, each segment has 7 parameters. The three
segment parameters were processed for data optimization. Four dis-
eases were identified under the different number of principal compo-
nents. The average disease recognition rate was obtained. The identi-
fication results are shown in Fig. 11.

It can be seen from the figure that the seven factors in the first stage
have the greatest contribution to the recognition effect. When the six
principal components are selected, the average recognition effect is the
best. The recognition rate is 92.5%, but it is 3.33% lower than that of
PCA-BP. The average recognition rate of PCA-SVM is 93.33%, which is
2.5% lower than PCA-BP. Therefore, PCA-BP was used for disease
identification in this study.

5. Conclusion

Four rice blast diseases were treated by image processing tech-
nology to obtain the color, morphological, and texture features of le-
sion. Combining with principal component analysis and BP neural
network, four identification models of rice blast lesion were established
to rapidly identify the lesion. Firstly, 6 color features, 10 morphological
features and 5 texture features of each lesion were extracted, and then
principal component analysis method was used to reduce the dimension
to get 6 principal component factors which were input in BP neural
network. Finally − −6 11 4 3-layer neural network structure constructed
classified and identified the rice blast lesion. The average recognition
rate reached 95.83%, increased by 7.5% compared with using BP neural
network recognition method.

In summary, the PCA-BP method proposed in this paper can opti-
mize the characteristic parameters to facilitate the rapid and efficient
identification of rice blast disease, but there are still some shortcomings
in the identification of lesions with similar morphology and color.
Overall, the research method proposed in this paper provides a new

Fig. 9. The recognition effect graph of different number of principal compo-
nents.

Fig. 10. Recognition renderings of different hidden layers.

Table 4
The recognition results of 4 kinds of blast using PCA-BP.

Lesions category Sample Recognition results of test set Recognition rate Average recognition rate

Acute type Chronic type Brown-point type White-point type

Acute type 30 27 3 0 0 90.00% 95.83%
Chronic type 30 1 29 0 0 96.67%
Brown-point type 30 0 0 30 0 100%
White-point type 30 1 0 0 29 96.67%
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idea for real-time rapid identification of rice blast.
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Table 5
The recognition results of 4 kinds of blast using BP neural network.

Lesions category sample Recognition results of test set Recognition rate Average recognition rate

Acute type Chronic type Brown-point type White-point type

Acute type 30 25 4 0 1 83.33% 88.33%
Chronic type 30 2 28 0 0 93.33%
Brown-point type 30 1 2 27 0 90.00%
White-point type 30 4 0 0 26 86.67%

Table 6
The recognition results of 4 kinds of blast using PCA-SVM.

Lesions category sample Recognition results of test set Recognition rate Average recognition rate

Acute type Chronic type Brown-point type White-point type

Acute type 30 27 3 0 0 27 90.00%
Chronic type 30 2 28 0 0 28 93.33%
Brown-point type 30 1 0 29 0 29 96.66%
White-point type 30 0 2 0 28 28 93.33%

Fig. 11. Recognition renderings of different principal component Numbers.
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